Data-driven understanding of energy systems

picture of Benjamin Schäfer

Benjamin Schäfer

I am a Physicist who turned into a Data Scientist to contribute to our society by supporting the energy transition via data-driven approaches. 

In my research, I investigate complex energy systems, using interpretable machine learning to understand, predict and design future energy systems.

Currently, I am an Assistant Professor, leading a group at the Karlsruhe Institute of Technology (KIT) on  Data-driven analysis of complex systems (DRACOS).


picture of sun rising behind many wind mills

My goal is to understand complex energy systems from a data-driven point of view, i.e. without assuming too much prior knowledge. 

I pay special attention to making any forecast or analysis transparent and explainable, using and developing interpretable machine learning tools. Thereby, I wish to identify drivers and risks for energy systems and help to design future systems, e.g. involving a high share of wind generation, electric cars, heat pumps etc.


picture of books and pens

Recent highlights

Using explainable artificial intelligence, we obtained insights into how electricity prices depend on external factors Energy and AI 2023 as well as how regulatory changes impact price dynamics ACM e-energy 2023

Constructing new transmission lines in power grids may induce Braess' Paradox, i.e. reduce system stability. Our approach, identifies Braessian lines and may guide grid extension plans. Nature Communications 2022  

Knowing the required electric power demand and its variations is necessary to balance demand and supply. We developed a data-driven approach to extract the trend and characterise demand fluctuations.  Nature Communications 2022


If any of this sounds interesting to you, feel free to get in touch